15	30	Cŀ		7)		D	ALIBRATION UE DATE: ary 11, 2020
vir	Ce	rtifa	a I			2002/02/2020	ation	
-	12 10 124		Contraction of the local division of the loc				0.97	
Cal. Date:	January 11,	2019	Rootsn	neter S/N:	438320		293	°К
Operator:	Jim Tisch					Pa:	760.7	mm Hg
Calibration	Model #:	TE-5025A	Calib	rator S/N:	0005			
		Vol. Init	Mat. Plant	avet	ATT	4.0		1
	Bun	10.000	Vol. Final	ΔVol.	∆Time (min)	ΔP	ΔH (i= μ2O)	
	Run	(m3)	(m3)	(m3)	(min) 1.4090	(mm Hg)	(in H2O)	
	1	1	2	1	the state of the s	3.2	2.00	1
	2	3	4	1	0.9980	6.4	4.00	1
	3	5	6	1	0.8900	7.8	5.00	1
	4	9	8	1	0.8450	8.7	5.50	4
	>	э	10	1	0.6990	12.6	8.00	
			D	ata Tabulat	tion			
	Vstd	Qstd	$\sqrt{\Delta H \left(\frac{Pa}{Pstd}\right)}$	Tstd)		Qa	√∆н(та/Ра)	
	(m3)	(x-axis)	(y-axis	5)	Va	(x-axis)	(y-axis)	
	1.0138	0.7195	1.426	9	0.9958	0.7067	0.8777	
	1.0095	1.0115	2.018	0	0.9916	0.9936	1.2412	
	1.0076	1.1321	2.256	1	0.9897	1.1121	1.3877	
	1,0064	1.1910	2.366	3	0.9886	1.1699	1.4555	
	1,0012	1.4323	2.853		0.9834	1.4059	1.7553	
		m=	1.998			m=	1.25149	
	QSTD	b=	-0.008		QA	b=	-0.00543	
		r=	0.999	97		r=	0.99997	
				Calculation	15			
			/Pstd)(Tstd/Ta) [∆Vol((Pa-∆i	P)/Pa)	
	Qstd=	√std/∆Time			Qa=	Va/∆Time		
			For subseque	ent flow rat	e calculation	ts:		
	Qstd=	1/т ((√Δн(-	$\frac{Pa}{Pstd}$ $\left(\frac{Tstd}{Ta}\right)$)-b)	Qa=	$1/m \left(\sqrt{\Delta F} \right)$	(Ta/Pa))-b)	
	Standard	Conditions						
Tstd:	and the second se			- E		RECA	LIBRATION	
Pstd:		mm Hg						1000
		еү					nnual recalibratio	
		er reading (in					Regulations Part !	The second s
		ter reading (mm Hg)				, Reference Meth	
and a second s	osolute temp	essure ("K)					ended Particulati re, 9.2.17, page 1	
las actual he								

ch Environmental, Inc.

Ľ

5 South Miami Avenue

lage of Cleves, OH 45002

www.tisch-env.com TOLL FREE: (877)263-7610 FAX: (513)467-9009

Calibration Data for High Volume Sampler (TSP Sampler)

Location	:	СМАЗа	Calbration Date	:	19-Jun-19
Equipment no.	:	HVS012	Calbration Due Date	:	19-Aug-19

CALIBRATION OF CONTINUOUS FLOW RECORDER

Ambient Condition									
Temperature, T _a		303		Kelvin	Pressure, P	a	1	1009 mmHg	
Orifice Transfer Standard Information									
Equipment No.		0005		Slope, m _c	1.998	61	Intercept, bc	-0.00882	
Last Calibration Date		11-Jan-1	9		(H x	P _a / 10	13.3 x 298 /	T _a) ^{1/2}	
Next Calibration Date		11-Jan-2	0		=	m _c >	$Q_{std} + b_{c}$		
Calibration of TSP									
Calibration	Manometer Reading			c) _{std}	Contin	uous Flow	IC	
Point	H (inches of water)		(m ³	/ min.)	Recorder, W		(W(P _a /1013.3x298/T _a) ^{1/2} /35.3 ⁴		
	(up)	(down)	(difference)	X-	axis	(CFM)	Y-axis	
1	1.1	1.1	2.2	0.	7388		20	19.7922	
2	2.1	2.1	4.2	1.0	0192		27	26.7194	
3	3.4	3.4	6.8	1.:	2956		39	38.5947	
4	4.5	4.5	9.0	1.4	4899		47	46.5116	
5	5.3	5.3	10.6	1.0	6165		55	54.4285	
By Linear Regression of	Y on X								
	Slope, m	=	39.3	179	Int	ercept, b =	= -1'	1.2301	
Correlation Co	pefficient*	=	0.99	907					
Calibration	Accepted	=	Yes/ł	\o **					

* if Correlation Coefficient < 0.990, check and recalibration again.

:

:

Henry Lau

19-Jun-19

** Delete as appropriate.

Remarks :

Calibrated by

Date

Checked by

Date

Dean Chan

19-Jun-19

:

•

Calibration Data for High Volume Sampler (TSP Sampler)

Location	:	CMA3a	Calbration Date	:	16-Aug-19
Equipment no.	:	HVS012	Calbration Due Date	: _	16-Oct-19

CALIBRATION OF CONTINUOUS FLOW RECORDER

Ambient Condition									
Temperature, T _a		303		Kelvin	Pressure, P	a	1	003 mmHg	
Orifice Transfer Standard Information									
Equipment No.		0005		Slope, m _c	1.998	61	Intercept, bc	-0.00882	
Last Calibration Date		11-Jan-1	9		(H x	P _a / 10	13.3 x 298 /	T _a) ^{1/2}	
Next Calibration Date		11-Jan-2	0		=	m _c x	$Q_{std} + b_{c}$		
Calibration of TSP									
Calibration	Manometer Reading			C) _{std}	Contin	uous Flow	IC	
Point	H (inches of water)		(m ³	/ min.)	Recorder, W		(W(P _a /1013.3x298/T _a) ^{1/2} /35.31		
	(up)	(down)	(difference)	X-	axis	(CFM)	Y-axis	
1	1.3	1.3	2.6	0.	8004		20	19.7332	
2	2.5	2.5	5.0	1.	1083		30	29.5999	
3	3.5	3.5	7.0	1.	3106		40	39.4665	
4	4.4	4.4	8.8	1.	4689		48	47.3598	
5	5.5	5.5	11.0	1.	6417		51	50.3197	
By Linear Regression of	Y on X								
	Slope, m	=	38.5	547	Int	ercept, b =	-11	1.5139	
Correlation Co	pefficient*	=	0.99	921					
Calibration	Accepted	=	Yes/ł	No**					

* if Correlation Coefficient < 0.990, check and recalibration again.

** Delete as appropriate.

Remarks :					
Calibrated by	:	Henry Lau	Checked by	:	Dean Chan
Date	:	16-Aug-19	– Date	:	16-Aug-19

Calibration Data for High Volume Sampler (TSP Sampler)

Location	:	CMA4a	Calbration Date	:	19-Jun-19
Equipment no.	:	HVS004	Calbration Due Date	:	19-Aug-19

CALIBRATION OF CONTINUOUS FLOW RECORDER

Ambient Condition									
Temperature, T _a		303	J	Kelvin Pressure, P a			1	1009 mmHg	
Orifice Transfer Standard Information									
Equipment No.		0005		Slope, m _c	1.998	61	Intercept, bc	-0.00882	
Last Calibration Date		11-Jan-1	9		(H x	P _a / 10	13.3 x 298 /	T _a) ^{1/2}	
Next Calibration Date		11-Jan-2	0	1	=	m _c x	$x Q_{std} + b_{c}$		
Calibration of TSP									
Calibration	Manometer Reading			C) _{std}	Contin	uous Flow	IC	
Point	H (inches of water)		(m ³	/ min.)	Rec	order, W	(W(P _a /1013.3x298/T _a) ^{1/2} /35.31)		
	(up)	(down)	(difference)	X-	axis	(CFM)		Y-axis	
1	1.4	1.4	2.8	0.8	8330		37	36.6155	
2	2.3	2.3	4.6	1.0	0664		44	43.5428	
3	3.6	3.6	7.2	1.3	3330		52	51.4596	
4	4.6	4.6	9.2	1.5	5063		58	57.3973	
5	6.0	6.0	12.0	1.7	7197		63	62.3453	
By Linear Regression of `	Y on X								
	Slope, m	=	29.5	175	Int	ercept, b =	= 12	2.1454	
Correlation Co	cefficient*	=	0.99	989					
Calibration	Accepted	=	Yes/	No**					

* if Correlation Coefficient < 0.990, check and recalibration again.

:

:

Henry Lau

19-Jun-19

** Delete as appropriate.

Remarks :	

Calibrated by

Date

Checked by

Date

Dean Chan

:

•

19-Jun-19

Calibration Data for High Volume Sampler (TSP Sampler)

Location	:	CMA4a	Calbration Date	:	16-Aug-19
Equipment no.	: _	HVS004	Calbration Due Date	:	16-Oct-19

CALIBRATION OF CONTINUOUS FLOW RECORDER

Ambient Condition									
Temperature, T _a		303		Kelvin Pressure, P a			1	003 mmHg	
Orifice Transfer Standard Information									
Equipment No.		0005		Slope, m _c	1.998	61	Intercept, bc	-0.00882	
Last Calibration Date		11-Jan-1	9		(H x	P _a / 10 ⁴	13.3 x 298 /	T _a) ^{1/2}	
Next Calibration Date		11-Jan-2	0		=	m _c x	$Q_{std} + b_{c}$		
Calibration of TSP									
Calibration	Manometer Reading			G) _{std}	Contin	uous Flow	IC	
Point	H (inches of water)			(m ³	/ min.)	Recorder, W		(W(P _a /1013.3x298/T _a) ^{1/2} /35.31)	
	(up)	(down)	(difference)	X-	axis	s (CFM)		Y-axis	
1	1.5	1.5	3.0	0.8	8595		32	31.5732	
2	2.4	2.4	4.8	1.0	0860		40	39.4665	
3	3.5	3.5	7.0	1.3	3106		50	49.3331	
4	4.5	4.5	9.0	1.4	4854		56	55.2531	
5	5.8	5.8	11.6	1.0	6858		60	59.1997	
By Linear Regression of	Y on X								
	Slope, m	=	34.7	449	Int	ercept, b =	2.	3021	
Correlation Co	pefficient*	=	0.99	927					
Calibration	Accepted	=	Yes/ł	\o **					

* if Correlation Coefficient < 0.990, check and recalibration again.

** Delete as appropriate.

Remarks :					
Calibrated by	:	Henry Lau	Checked by	/ :	Dean Chan
Date	:	16-Aug-19	– Date	:	16-Aug-19

综合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD. 香港美行就道 37號利達中心12樓

12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:	18CA1114 02			Page	1	of	2
Item tested							
Description:	Sound Level Mete	r (Type 1)	20	Microphone			
Manufacturer:	B&K			B&K			
Type/Model No.:	2236		- 22	4188			
Serial/Equipment No.:	2100736		- 55	2288941			
Adaptors used:	-		- 18 - I	-			
Item submitted by			_				
Customer Name:	Lam Environment	al Service Ltd.					
Address of Customer:		15-50000000000					
Request No .:							
Date of receipt:	14-Nov-2018						
Date of test:	15-Nov-2018						
Reference equipment	used in the calib	ration					
Description:	Model:	Serial No.		Expiry Date:		Traceal	ble to:
Multi function sound calibrator	B&K 4228	2288444		23-Aug-2019		CIGISME	EC
Signal generator	DS 360	33873		24-Apr-2019		CEPREI	
Signal generator	DS 360	61227		23-Apr-2019		CEPREI	
Ambient conditions							
Temperature:	20 ± 1 °C						
Relative humidity:	50 ± 10 %						
Air pressure:	1000 ± 5 hPa						
Test specifications							
1, The Sound Level Met	ter has been calibrat	ed in accordance w	ith the	requirements as sp	ecifie	d in BS 7	580: Part 1
and the lab calibratio	n procedure SMTP00						
	Contraction and the strain of the second	The second se					

- The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of ±20%.
- The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

Actual Measurement data are documented on worksheets.

Approved Signatory: Date: 15-Nov-2018 Company Chop:

© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-18 num 1/Rev.C/01/02/2007

Hong Kong Accreditation Service (HKAS) has accredited this laboratory (Reg. No. HOKLAS 928) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific calibration activities as listed in the HOKLAS directory of accredited laboratories. The results shown in this certificate are traceable to the International System of Units (SI) or recognised measurement standards. This certificate shall not be reproduced except in full.

綜合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD.

香 憲 黄 竹 坑 道 3 7 號 利 嶠 中 心 1 2 樓 12F., Laader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

2

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

18CA1114 02

Page

of

Electrical Tests 1.

The electrical tests were performed using an equivalent capacitance substituted for the microphone. The results are given in below with test status and the estimated uncertainties. The "Pass" means the result of the test is inside the tolerances stated in the test specifications. The "-" means the result of test is outside these tolerances.

Test:	Subtest:	Status:	Expanded Uncertanity (dB)	Coverage Factor
Self-generated noise	A	Pass	0.3	
	C	Pass	1.0	2.1
	Lin	Pass	2.0	2.2
Linearity range for Leg	At reference range , Step 5 dB at 4 kHz	Pass	0.3	
	Reference SPL on all other ranges	Pass	0.3	
	2 dB below upper limit of each range	Pass	0.3	
	2 dB above lower limit of each range	Pass	0.3	
Linearity range for SPL	At reference range , Step 5 dB at 4 kHz	Pass	0.3	
Frequency weightings	A	Pass	0.3	
	C	Pass	0.3	
	Lin	Pass	0.3	
Time weightings	Single Burst Fast	Pass	0.3	
15 BAD OF #1000#154	Single Burst Slow	Pass	0.3	
Peak response	Single 100µs rectangular pulse	Pass	0.3	
R.M.S. accuracy	Crest factor of 3	Pass	0.3	
Time weighting I	Single burst 5 ms at 2000 Hz	Pass	0.3	
Contraction and an end of the second	Repeated at frequency of 100 Hz	Pass.	0.3	
Time averaging	1 ms burst duty factor 1/10 ³ at 4kHz	Pass	0.3	
000 CAN DE 200 CAN DE 2	1 ms burst duty factor 1/10 ⁴ at 4kHz	Pass	0.3	
Pulse range	Single burst 10 ms at 4 kHz	Pass	0.4	
Sound exposure level	Single burst 10 ms at 4 kHz	Pass	0.4	
Overload indication	SPL	Pass	0.3	
5 1 1 1 1 M M M M M M M M M M M M M M M	Lea	Pass	0.4	

2, Acoustic tests

The complete sound level meter was calibrated on the reference range using a B&K 4226 acoustic calibrator with 1000Hz and SPL 94 dB. The sensitivity of the sound level meter was adjusted. The test result at 125 Hz and 8000 Hz are given in below with test status and the estimated uncertainties.

Test:	Subtest	Status	Expanded Uncertanity (dB)	Coverage Factor
Acoustic response	Weighting A at 125 Hz	Pass	0.3	
6648877.0003978787891495	Weighting A at 8000 Hz	Pass	0.5	

Response to associated sound calibrator 3.

N/A

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

	1	- End -	Amon	
Calibrated by:	~ 7	Checked by:	- 1-44	
Date:	Fung Chi Yip 15-Nov-2018	Date:	/Shek Kwong Tat 15-Nov-2018	

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Sote & Materials Engineering Co., UM

Form No CARP152-2/Issue 1/Rev C/01/02/2007

Hong Kong Accreditation Service (HKAS) has accredited this laboratory (Reg. No. HOKLAS 028) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific calibration activities as listed in the HOKLAS directory of accredited laboratories. The results shown in this certificate are traceable to the International System of Units (SI) or recognised measurement standards. This certificate shall not be reproduced except in full,

Calibration Certificate

Certificate Number 2018010851

Customer: LAM Environmental Services Ltd 11/F Centre Point 181-185 Gloucester Road Wanchai, , Hong Kong

Model Number	CAL200		Procedure Number	Procedure Number D0001.8386			
Serial Number	13098		Technician	Scott Montgomery		mery	
Test Results	Pass		Calibration Date	29 Oc	29 Oct 2018		
	Incoder	and a	Calibration Due				
Initial Condition	Inoperable		Temperature	23	*C	± 0.3 °C	
Description	Larson	Davis CAL200 Acoustic Calibrator	Humidity	34	%RH	± 3 %RH	
			Static Pressure	101.2	kPa	±1 kPa	
Evaluation Metho	od	The data is aquired by the insert volta circuit sensitivity. Data reported in dB	500 XM 200 CM 570	ne refere	nce mic	crophone's open	
Compliance Standards		Compliant to Manufacturer Specificat IEC 60942:2017	ions per D0001.8190 and the ANSI S1.40-2006	following	standa	ards:	

Issuing lab certifies that the instrument described above meets or exceeds all specifications as stated in the referenced procedure (unless otherwise noted). It has been calibrated using measurement standards traceable to the SI through the National Institute of Standards and Technology (NIST), or other national measurement institutes, and meets the requirements of ISO/IEC 17025:2005. Test points marked with a \$ in the uncertainties column do not fall within this laboratory's scope of accreditation.

The quality system is registered to ISO 9001:2008.

This calibration is a direct comparison of the unit under test to the listed reference standards and did not involve any sampling plans to complete. No allowance has been made for the instability of the test device due to use, time, etc. Such allowances would be made by the customer as needed.

The uncertainties were computed in accordance with the ISO Guide to the Expression of Uncertainty in Measurement (GUM). A coverage factor of approximately 2 sigma (k=2) has been applied to the standard uncertainty to express the expanded uncertainty at approximately 95% confidence level.

This report may not be reproduced, except in full, unless permission for the publication of an approved abstract is obtained in writing from the organization issuing this report.

Standards Used	1	
Cal Date	Cal Due	Cal Standard
09/06/2018	09/06/2019	001021
04/10/2018	04/10/2019	001051
03/07/2018	03/07/2019	005446
09/20/2018	09/20/2019	006506
08/07/2018	08/07/2019	006507
05/10/2018	05/10/2019	006510
07/18/2018	07/18/2019	007368
	Cal Date 09/06/2018 04/10/2018 03/07/2018 09/20/2018 08/07/2018 05/10/2018	09/06/2018 09/06/2019 04/10/2018 04/10/2019 03/07/2018 03/07/2019 09/20/2018 09/20/2019 08/07/2018 08/07/2019 05/10/2018 05/10/2019

Larson Davis, a division of PCB Piczotronics, Inc 1681 West 820 North Provo, UT 84601, United States 716-684-0001

10/29/2018 1-43-01PM

Information supplied	by customer:		
CONTACT:	MR. CHAN KA CHUN	JOB REFERENCE NO.:	22777053-E29V4502
CLIENT:	LAM GEOTECHNICS LIMITED		
DATE RECEIVED:			
DATE OF ISSUE:	18/06/2019		
ADDRESS:	11/F, CENTRE POINT, 181-185, GI	OUCESTER ROAD.	
	WANCHAI, HONG KONG		
PROJECT:	a n da MUM series constants de la carga de la c		

METHOD OF PERFORMANCE CHECK/ CALIBRATION: Ref: APHA22nd ed 2130B

COMMENTS

It is certified that the item under performance check/calibration has been calibrated/checked by corresponding calibrated equipment in the laboratory.

Maximum Tolerance and calibration frequency stated in the report, unless otherwise stated, the internal acceptance criteria of FT Laboratories Ltd will be followed.

Scope of Test:	Turbidity	
Equipment Type:	Turbidimeter	
Brand Name:	Xin Rui	
Model No.:	WGZ-3B	
Serial No.:	1807077	
Equipment No.:		_
Date of Calibration:	01/06/2019	_
Remarks	0.11000.00000	

Remarks:

This is the Final Report. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

Certified By:

HO Lai Sze

Senior Chemist

Issue Date:

18/06/2019

This report may not be reproduced except with prior written approval from FT Laboratories Ltd. Form No.: HG022-002 Rev 0 20190101

Page 1 of 2

WORK ORDER:	22777053-E29V4502
DATE OF ISSUE:	18/06/2019
CLIENT:	LAM GEOTECHNICS LIMITED

Equipment Type:	Turbidimeter	
Brand Name:	Xin Rui	
Model No.:	WGZ-3B	
Serial No.:	1807077	
Equipment No.:		
Date of Calibration:	01/06/2019	
Date of next Calibation:	31/08/2019	
Lab ID:	H190165-02	

Parameters:

Turbidity

Method Ref: APHA 22nd ed. 2130B

Expected Reading (NTU)	Display Reading (NTU)	Tolerance	
0	0.00		
4	4.32	8.0%	
10	9.99	+0.1%	
40	43.32	8.3%	
100	100.30	0.3%	
400	435	8.6%	
1000	1002	0.2%	
	Tolerance Limit (±)	10%	

Remark: "Displayed Reading" presents the figures shown on item under calibration/checking regardless of equipment precision or significant figures.

This report may not be reproduced except with prior written approval from FT Laboratories Ltd. Form No.: HG022-002 Rev 0 20190101

ALS Technichem (HK) Pty Ltd 11/F, Chung Shun Knitting Centre 1-3 Wing Yip Street, Kwai Chung N.T., Hong Kong T: +852 2610 1044 | F: +852 2610 2021

REPORT OF EQUIPMENT PERFORMANCE CHECK/ CALIBRATION

CONTACT: CLIENT:	CHAN KA CHUN LAM ENVIRONMENTAL SERVICES LTD	WORK ORDER:	HK1931902
ADDRESS:	11/ F CENTRE POINT, 181- 185 GLOUCESTER ROAD, WANCHAI, HONG KONG	SUB- BATCH: LABORATORY: DATE RECEIVED: DATE OF ISSUE:	0 HONG KONG 25- الل- 2019 01- Aug- 2019

<u>COMMENTS</u>

The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

The "Tolerance Limit" quoted is the acceptance criteria applicable for similar equipment used by the ALS Hong Kong laboratory or quoted from relevant international standards.

The "Next Calibration Date" is recommended according to best practice principle as practised by the ALS Hong Kong laboratory or quoted from relevant international standards.

Scope of Test:	Dissolved Oxygen, pH Value, Salinity and Temperature
Equipment Type:	Multifunctional Meter
Brand Name:	YSI
Model No.:	Professional Plus
Serial No .:	17F100236
Equipment No.:	
Date of Calibration:	2019 - الل - 2019

NOTES

This is the Final Report and supersedes any preliminary report with this batch number.

Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

Cha Si

Mr Chan Siu Ming, Vico Manager - Inorganic

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

WORK ORDER: HK1931902

SUB-BATCH:	0
DATE OF ISSUE:	01- Aug- 2019
CLIENT:	LAM ENVIRONMENTAL SERVICES LTD

Multifunctional Meter YSI		
Professional Plus		
17F100236		
31- Jul- 2019	Date of Next Calibration:	31- Oct- 2019
	YSI Professional Plus 17F100236	YSI Professional Plus 17F100236

PARAMETERS:

Dissolved Oxygen Method Ref: APHA (21st edition), 4500- O: G

Expected Reading (mg/ L)	Displayed Reading (mg/ L)	Tolerance (mg/ L)
7.30	7.37	+ 0.07
5.79	5.64	- 0.15
3.65	3.60	- 0.05
	Tolerance Limit (mg/L)	±0.20

pH Value

Method Ref: APHA (21st edition), 4500H:B

Expected Reading (pH unit)	Displayed Reading (pH unit)	Tolerance (pH unit)
4.0	4.66	+ 0.66
7.0	7.04	+0.04
10.0	8.64	- 1.36
	Tolerance Limit (pH unit)	±0.20

Salinity

Method Ref: APHA (21st edition), 2520B

Expected Reading (ppt)	Displayed Reading (ppt)	Tolerance (%)
0	0.00	
10	9.56	- 4.4
20	19.24	- 3.8
30	29.73	- 0.9
	Tolerance Limit (%)	±10.0

Ma Ain

Mr Chan Siu Ming, Vico Manager - Inorganic

WORK ORDER:	HK1931902			ALS
SUB-BATCH:	0			
DATE OF ISSUE:	01- Aug- 2019			
CLIENT:	LAM ENVIRONMENTAL SERVIC	CESLTD		
Equipment Type:	Multifunctional Meter			
Brand Name:	YSI			
2				
Model No.:	Professional Plus			
Serial No.:	17F100236			
Equipment No.:				
Date of Calibration:	31- Jul- 2019	Date of Next Calibration:	31- Oct- 2019	

PARAMETERS: Temperature

Method Ref: Section 6 of International Accreditation New Zealand Technical Guide No. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

Expected Reading (°C)	Displayed Reading (°C)	Tolerance (°C)
7.0	6.4	- 0.6
19.5	19.0	- 0.5
39.0	38.7	- 0.3
	Tolerance Limit (°C)	±2.0

Cha Alig

Mr Chan Siu Ming, Vico Manager - Inorganic

ALS Technichem (HK) Pty Ltd 11/F, Chung Shun Knitting Centre 1-3 Wing Yip Street, Kwai Chung N.T., Hong Kong T: +852 2610 1044 | F: +852 2610 2021

REPORT OF EQUIPMENT PERFORMANCE CHECK/ CALIBRATION

CONTACT: CLIENT:	CHAN KA CHUN LAM ENVIRONMENTAL SERVICES LTD	WORK ORDER:	HK1930780
ADDRESS:	11/ F CENTRE POINT, 181- 185 GLOUCESTER ROAD, WANCHAI, HONG KONG	SUB- BATCH: LABORATORY: DATE RECEIVED: DATE OF ISSUE:	0 HONG KONG 17- اىل 2019 24- الى 2019

<u>COMMENTS</u>

The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

The "Tolerance Limit" quoted is the acceptance criteria applicable for similar equipment used by the ALS Hong Kong laboratory or quoted from relevant international standards.

The "Next Calibration Date" is recommended according to best practice principle as practised by the ALS Hong Kong laboratory or quoted from relevant international standards.

Scope of Test:	Dissolved Oxygen, pH Value, Salinity and Temperature
Equipment Type:	Multifunctional Meter
Brand Name:	YSI
Model No.:	Professional Plus
Serial No .:	14K100322
Equipment No.:	
Date of Calibration:	23- Jul- 2019

NOTES

This is the Final Report and supersedes any preliminary report with this batch number.

Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

Cha Si

Mr Chan Siu Ming, Vico Manager - Inorganic

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

WORK ORDER: HK1930780

SUB-BATCH:	0
DATE OF ISSUE:	24- ابل - 2019
CLIENT:	LAM ENVIRONMENTAL SERVICES LTD

Equipment Type: Brand Name:	Multifunctional Meter YSI		
Model No.:	Professional Plus		
Serial No.:	14K100322		
Equipment No.:			
Date of Calibration:	23- ایل -2019	Date of Next Calibration:	23- Oct- 2019

PARAMETERS:

Dissolved Oxygen Method Ref: APHA (21st edition), 4500- O: G

Expected Reading (mg/ L)	Displayed Reading (mg/ L)	Tolerance (mg/ L)
7.23	7.16	- 0.07
5.75	5.59	- 0.16
3.70	3.60	- 0.10
	Tolerance Limit (mg/L)	±0.20

pH Value

Method Ref: APHA (21st edition), 4500H:B

Expected Reading (pH unit)	Displayed Reading (pH unit)	Tolerance (pH unit)		
4.0	4.04	+ 0.04		
7.0	6.96	- 0.04		
10.0	9.87	- 0.13		
	Tolerance Limit (pH unit)	±0.20		

Salinity

Method Ref: APHA (21st edition), 2520B

Expected Reading (ppt)	Displayed Reading (ppt)	Tolerance (%)
0	0.00	
10	9.96	- 0.4
20	20.18	+ 0.9
30	30.95	+ 3.2
	Tolerance Limit (%)	±10.0

Ma Ain

Mr Chan Siu Ming, Vico Manager - Inorganic

WORK ORDER:	HK1930780			ALS
SUB-BATCH: DATE OF ISSUE: CLIENT:	0 24- الل- 2019 LAM ENVIRONMENTAL SERVIC	CESLTD		
Equipment Type: Brand Name: Model No.: Serial No.: Equipment No.: Date of Calibration:	Multifunctional Meter YSI Professional Plus 14K100322 23- Jul- 2019	Date of Next Calibration:	23- Oct- 2019	

PARAMETERS: Temperature

Method Ref: Section 6 of International Accreditation New Zealand Technical Guide No. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

Expected Reading (°C)	Displayed Reading (°C)	Tolerance (°C)
10.5	11.1	+ 0.6
20.0	18.9	- 1.1
39.0	38.7	- 0.3
	Tolerance Limit (°C)	±2.0

Cha Aiz

Mr Chan Siu Ming, Vico Manager - Inorganic